Pitx2-microRNA pathway that delimits sinoatrial node development and inhibits predisposition to atrial fibrillation.
نویسندگان
چکیده
The molecular mechanisms underlying atrial fibrillation, the most common sustained cardiac arrhythmia, remain poorly understood. Genome-wide association studies uncovered a major atrial fibrillation susceptibility locus on human chromosome 4q25 in close proximity to the paired-like homeodomain transcription factor 2 (Pitx2) homeobox gene. Pitx2, a target of the left-sided Nodal signaling pathway that initiates early in development, represses the sinoatrial node program and pacemaker activity on the left side. To address the mechanisms underlying this repressive activity, we hypothesized that Pitx2 regulates microRNAs (miRs) to repress the sinoatrial node genetic program. MiRs are small noncoding RNAs that regulate gene expression posttranscriptionally. Using an integrated genomic approach, we discovered that Pitx2 positively regulates miR-17-92 and miR-106b-25. Intracardiac electrical stimulation revealed that both miR-17-92 and miR-106b-25 deficient mice exhibit pacing-induced atrial fibrillation. Furthermore electrocardiogram telemetry revealed that mice with miR-17-92 cardiac-specific inactivation develop prolonged PR intervals whereas mice with miR-17-92 cardiac-specific inactivation and miR-106b-25 heterozygosity develop sinoatrial node dysfunction. Both arrhythmias are risk factors for atrial fibrillation in humans. Importantly, miR-17-92 and miR-106b-25 directly repress genes, such as Shox2 and Tbx3, that are required for sinoatrial node development. Together, to our knowledge, these findings provide the first genetic evidence for an miR loss-of-function that increases atrial fibrillation susceptibility.
منابع مشابه
Effects Of Fast Pathway Ablation On The Concealment Zone And Electrophysiological Behavior Of AV-Node During Atrial Fibrillation.
Objectives: Dual pathways have a determinant role in the occurrence of atrio nodal tachyarrhythmia (AVNRT). The aim of present study is to determine the role of slow pathway (SP) in the concealment zone and protective role of AV node during atrial fibrillation (AF). Material &Methods: In 7 isolated nodal rabbit preparation zone of concealment and concealed conduction is quantified by Specif...
متن کاملHyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling
PITX2 is a homeobox transcription factor involved in embryonic left/right signaling and more recently has been associated to cardiac arrhythmias. Genome wide association studies have pinpointed PITX2 as a major player underlying atrial fibrillation (AF). We have previously described that PITX2 expression is impaired in AF patients. Furthermore, distinct studies demonstrate that Pitx2 insufficie...
متن کاملPitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes.
BACKGROUND Pitx2 is the homeobox gene located in proximity to the human 4q25 familial atrial fibrillation (AF) locus. When deleted in the mouse germline, Pitx2 haploinsufficiency predisposes to pacing-induced AF, indicating that reduced Pitx2 promotes an arrhythmogenic substrate. Previous work focused on Pitx2 developmental functions that predispose to AF. Although Pitx2 is expressed in postnat...
متن کاملComparison of Hyperpolarization-Activiated Current “if ” on the Rate of Spontaneous Activity and Cycle Length before and after Cutting of Atrial Muscle away from Intact Sinoatrial Node of Rabbit
It has been shown that the hyperpolarization-activated current “if” that is blocked by 2 mM Cs+ plays a minor role on pacemaker activity of the center and a major role on activity of the periphery of rabbit intact sino-atrial node. On the other hand some investigations showed that if the atrial muscle, surrounding the sino-atrial node, is cut away there is a shift in leading pacemaker site from...
متن کاملPITX2‐dependent gene regulation in atrial fibrillation and rhythm control
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide association studies have identified genetic variants associated with AF populations, with the strongest hits clustering on chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 25 شماره
صفحات -
تاریخ انتشار 2014